A novel method to estimate model uncertainty using machine learning techniques
نویسندگان
چکیده
[1] A novel method is presented for model uncertainty estimation using machine learning techniques and its application in rainfall runoff modeling. In this method, first, the probability distribution of the model error is estimated separately for different hydrological situations and second, the parameters characterizing this distribution are aggregated and used as output target values for building the training sets for the machine learning model. This latter model, being trained, encapsulates the information about the model error localized for different hydrological conditions in the past and is used to estimate the probability distribution of the model error for the new hydrological model runs. The M5 model tree is used as a machine learning model. The method is tested to estimate uncertainty of a conceptual rainfall runoff model of the Bagmati catchment in Nepal. In this paper the method is extended further to enable it to predict an approximation of the whole error distribution, and also the new results of comparing this method to other uncertainty estimation approaches are reported. It can be concluded that the method generates consistent, interpretable and improved model uncertainty estimates.
منابع مشابه
Automatic road crack detection and classification using image processing techniques, machine learning and integrated models in urban areas: A novel image binarization technique
The quality of the road pavement has always been one of the major concerns for governments around the world. Cracks in the asphalt are one of the most common road tensions that generally threaten the safety of roads and highways. In recent years, automated inspection methods such as image and video processing have been considered due to the high cost and error of manual metho...
متن کاملEvaluating machine learning methods and satellite images to estimate combined climatic indices
The reflections recorded on satellite images have been affected by various environmental factors. In these images, some of these factors are combined with other environmental factors that cannot be distinguished. Therefore, it seems wise to model these environmental phenomena in the form of hybrid indicators. In this regard, satellite imagery and machine learning methods can play a unique role ...
متن کاملA Novel Method to Estimate the Model Uncertainty Based on the Model Errors
This paper presents a novel method for estimating “total” predictive uncertainty using machine learning techniques. By the term “total” we mean that all sources of uncertainty are taken into account, including that of the input and observed data, model parameters and structure, without attempting to separate the contribution given by these different sources. We assume that the model error, whic...
متن کاملSimulation of Scour Pattern Around Cross-Vane Structures Using Outlier Robust Extreme Learning Machine
In this research, the scour hole depth at the downstream of cross-vane structures with different shapes (i.e., J, I, U, and W) was simulated utilizing a modern artificial intelligence method entitled "Outlier Robust Extreme Learning Machine (ORELM)". The observational data were divided into two groups: training (70%) and test (30%). Then, using the input parameters including the ratio of the st...
متن کاملApplication of ensemble learning techniques to model the atmospheric concentration of SO2
In view of pollution prediction modeling, the study adopts homogenous (random forest, bagging, and additive regression) and heterogeneous (voting) ensemble classifiers to predict the atmospheric concentration of Sulphur dioxide. For model validation, results were compared against widely known single base classifiers such as support vector machine, multilayer perceptron, linear regression and re...
متن کامل